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Abstract

The present paper analyzes a network formation problem, mainly
based on the framework presented in [Bala-Goyal 2000]. We depart from
their assumptions in two crucial aspects. On one hand, we assume that
connecting to an agent pays off not only for the number of connections
that the agent can provide but also for her intrinsic value. Since the val-
ues of the agents (which represent the amounts of information held by the
agents) differ from agent to agent, we are introducing heterogeneity in the
framework. On the other hand, we assume that each path connecting two
agents has an associated cost which is the sum of the number of edges it
includes. We obtain as a result that the only Nash structure is the circle
network, which emerges as a robust and optimal structure that maximizes
the benefits of the interactions among agents while at the same time it
minimizes the costs of network formation.

JEL Classification: D20, C72

1 Introduction

Interactions among different agents may be represented in several forms. A way
of representing direct exchanges that has attracted a lot of interest in the last
years is by means of networks. Because of its ease to grasp this tool of analysis
was first adopted in sociology and anthropology. It constituted for the experts
in those fields a pictorial way to understand the influence over individuals of
their neighborhoods. Focusing on real social networks sociologists and anthro-
pologists amassed a vast amount of evidence that helped to understand how
human behavior is molded by the behavior of other agents.

In mathematical terms a network is a graph, where the nodes represent indi-
vidual agents and the edge the links over which an utility good (e.g. information,
personal prestige, etc.) is exchanged [Wasserman-Faust 1994]. The economic
literature introduced recently game-theoretic tools in this framework. Instead of
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being concerned just with the descriptive aspects, some economic theorists tack-
led the issue of how networks arise, in the first place, and of what makes them
stable or efficient [Jackson-Wolinsky 1996], [Bala-Goyal 2000],[Dutta-Jackson 2000].
The game-theoretic approach to networks exhibits two main approaches: one
based in the notion of cooperative games and the other with a strong strategic
flavor. The analysis based in cooperative games, as it is usual in that approach,
focuses on the problem of the formation of coalitions among agents. The per-
vasive assumption of transferability of utilities makes the cooperative approach
difficult to justify in many cases as well as computationally costly [Qin 1996],
[Dutta et al. 1998], [Slikker-Nouweland 2001].

The strategic or non-cooperative approach, instead, just requires the defini-
tion of the strategies available to the agents as well as the characterization of
the corresponding individual payoff functions. Agents decide whether or not to
join the network, assessing the benefits of linking (or not) to other agents. The
rational choices of the agents lead to Nash equilibria that support the networks
that are the focus of analysis in this framework. This is, precisely, the approach
we will adopt in this paper.

As said, a network can be seen as a graph. An important modelling deci-
sion is whether this graph is directed or non-directed. This choice of primitives
has consequences also for the equilibrium outcomes in non-cooperative network
games. Non-directed graphs are useful to represent situations in which the direc-
tion of flow of utility goods is less important or irrelevant [Dutta-Mutuswami 1997].
On the other hand, directed graphs reflect the importance of distinguishing
which agent initiated the connection and of the direction of flow. A common-
place convention is to draw directed edges with arrowheads pointing towards
the agent that decided to start a link [Bala-Goyal 2000], [Dutta-Jackson 2001].

In this paper we model networks as directed graphs with one-way flow. We
call “information” (in a rather generic use of the term) to the utility good that
flows in the networks. Each agent is endowed with some amount of information,
but has a payoff function that depends positively on the amount of information
to which she has access to. By establishing links to other agents she can ob-
tain the information held by them, but se has to pay a small cost to establish
those links. The problem is to determine which structures can arise as strategic
equilibria in the interaction among the agents and whether they are optimal or
not.

Instances of the network formation problem analyzed here can be observed
in many areas. So, for example, consider the following scenario: suppose that
Internet users are charged a constant small amount for every link they visit.
When a user visits a web site, she has to pay that fee. If she follows a link she
has to pay for the new connection but she has access to more information. If she
follows a link in that page she accesses a different site where she can find more
information, again at a small cost. The question is, which is the most efficient
way to surf a series of web sites?

Closer to our framework, we may ask what kind of architecture for a local
area network (LAN) increases the speed of flow while reducing losses. This is in
fact analogous to our generic problem: a particular computer in the LAN may
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need to use resources from another computer in the network. It has to have an
efficient protocol to choose to which machine to connect. At the same time it
has to “pay” a small cost (in CPU time, say) to reach the one that allows it to
get the highest amount of resources. Since this is true for all the machines in the
LAN, its strategic outcome has to allow everyone to get to all the information
available, paying as little as possible. As in our result (although for technological
reasons) the final outcome is a circular network [Tanenbaum 1989].

This happens also in human organizations, as for example evaluation com-
mittees. They are usually constituted by experts in different fields. Each one
has to rely on the others to obtain information out of her field of expertise. The
circular network, in this case, minimizes the number of queries while at the same
time it maximizes the information available to them. Some recent discussion
about terrorist networks (e.g. Al-Qaeda) show that they share some of these
features, namely that operative agents report and obeys to a boss, but they do
not know other agents that also report to the same controller. The analogy with
our framework resides in the behavior of the controllers: they demand obedi-
ence from plain operatives but do not provide them information. To establish
a connection they have to pay for it (be it bribes, or just with compliments for
their fanaticism). The architecture that may ensue in this case is not necessarily
robust. It may break apart if just one of the n! odes i s being captured or killed
[Arquilla-Ronfeldt 2001]. This case differs from the more general setting that
will be analyzed in this paper. In our framework agents are not hierarchically
ordered and therefore allows for circular networks as solutions.

In Section 2 we will begin our analysis with a presentation of the model. In
Section 3 we will determine the equilibrium architecture and show how equilibria
verify some criteria of stability and optimality. Finally, Section 4 ends the paper
with a brief discussion of results reported here.

2 The Model

Let N = (1, . . . , n) be a set of agents. To avoid trivial results we will always
assume that n ≥ 3. If i and j are two typical members of N , a link among them,
without intermediaries, originated by i and ending in j will be represented as
ij. The interpretation of ij is that i establishes a contact with j that allows i to
get acquainted with both the information possessed by j as well as her network
of contacts. Each agent i ∈ N has some information of her own, Ii ∈ Z+,
(i.e. represented as a nonnegative integer). As said i can have access to more
information by forming links with other agents. The formation of links is costly,
in time, resources and effort, but for simplicity we will assume that a link ij has
a cost of 1 (in units of utility of information). By convention we assume that
the information of each agent is worth the cost of establishing a link to her, i.e.
that Ii > 1.

The agents will try to maximize the utility of the information available to
them as well as to minimize the cost of connecting to other agents. In order to
do this, they will be endowed with a set of strategies. Each strategy for i ∈ N is
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a (n− 1)-dimensional vector gi = 〈gi,1, . . . , gi,i−1, gi,i+1 . . . gi,n〉 where each gi,j ,
for j �= i, is either 0 or 1. This is interpreted as meaning that i establishes a
direct link with j if gi,j = 1 while if gi,j = 0 there is no such direct link. The set
of all i’s strategies is denoted as Gi. Since we restrict our analysis to only pure
strategies, |Gi| = 2n−1. Finally, G = G1 × . . . × Gn denotes the set of strategy
profiles in the interaction among the agents in N .

The existence of a direct link ij indicates an asymmetric communication
between i and j. That is, gi,j = 1 indicates that i establishes a communication
with j that permits i to access to j’s information but no viceversa (the symmetry
between i and j is restored if also gj,i = 1). Structures with this feature are
called one-way flow networks.

In one-way flow networks a strategy profile can be represented as a directed
graph g = (g1 . . . gn) over N . That is, in the directed graph the elements of N
are the nodes while any established link like gi,j = 1 is represented by an arrow
beginning in j with its head pointing to i.1 That is, arrowheads always point
toward the agent who establishes the link. It follows immediately that:

Proposition 1 There exists a one-to-one map between directed graphs among
n nodes and strategy profiles in G.

Proof: A directed graph with n nodes is such that for each node i there exists
at most one incoming arrow from each j �= i (and none from itself). Then,
for each j define gi,j equal to 1 if there exists an incoming arrow from j, and
0 otherwise. This defines gi = 〈gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,n〉 for each i ∈ N .
That is, it defines a g = 〈g1, . . . , gi, . . . , gn〉 ∈ G. Conversely, given g, a directed
graph can be obtained by just adding an arrow from j to i if gi,j = 1. Since gi,i

is not defined, the graph is loop-less, and since gi,j has only two possible values,
there exist either one or zero links between them. �

Example 1: consider a group of four agents, N = {a, b, c, d}. A joint
strategy g = 〈ga, gb, gc, gd〉 can be represented as a table:

Strategy a b c d
ga X 1 0 0
gb 0 X 1 0
gc 0 0 X 1
gd 0 0 0 X

Each row is the strategy chosen by one of the agents. Columns correspond
to the agents. An entry 1 in row i and column j means that the strategy of
agent i prescribes to establish a link with agent j. Entries in the diagonal are
crossed out since agents cannot establish links with themselves. In Figure 1 we
can see the directed graph that corresponds to g.

We define Ngi = {k ∈ N |gi,k = 1} as the set of agents to whom i establishes
a direct link according to her strategy gi. We say that there exists a path from j

1In order to represent the idea that when i establishes a link with j, the information flows
from j to i.
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Figure 1:

to i according to g ∈ G if there exists a sequence of different2 agents i, j0 . . . jm, j
such that gi,j0 = gj0,j1 = . . . = gjm−1,jm

= gjm,j = 1. In other words, given the
joint strategy g, we have that j0 ∈ Ngi , j1 ∈ Ngj0 , . . ., j ∈ Ngjm . A path from
j to i has a length, the cardinality of the sequence j0j1, j1j2, . . . , jm−1jm, i.e.
m, which indicates the number of intermediary links between j and i. Notice
that a direct link is a path of length 1.

Example 1 revisited: Given the strategy g = 〈ga, gb, gc, gd〉, we have that
Nga = {b}, Ngb = {c} and Ngc = {d} while Ngd = ∅. This sequence establishes
a path from d to a of length 3.

We denote the set of agents accessed (directly and otherwise) by i as N i;g =
{k ∈ N |k →g i} ∪ {i}. We include i in N i;g to indicate that i knows her own
valuation, despite the fact that we assumed that there is no direct link from i
to herself. Let µi : G → {0, ..., n × (n − 1)} be the number of links in all paths
that end in i, originated by agents in N i;g under any given joint strategy.3

Example 2: Assume that we have N = {1, 2, 3, 4, 5} and the strategy
g = 〈g1, g2, g3, g4, g5〉 given by the following table:

Strategy 1 2 3 4 5
g1 X 1 0 0 1
g2 0 X 1 0 0
g3 0 0 X 1 1
g4 0 0 0 X 0
g5 0 0 0 0 X

Figure 2 shows the corresponding network. We have that N1;g = {1, 2, 3, 4, 5},
N2;g = {2, 3, 4, 5}, N3;g = {3, 4, 5} while N4;g = {4} and N5;g = {5}. That
is, under g we have that 1 can access to the information of all the agents while
4 and 5 have access only to their own information. The number of links re-
quired to obtain the information are µ1(g) = 5, µ2(g) = 3 and µ3(g) = 2, while
µ4(g) = µ5(g) = 0.

2In order to avoid cycles.
3In a directed graph over n nodes there can be at most n × (n − 1) direct links.
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Figure 2:

To make this framework a game, we have to define the payoffs to the agents.
Let Πi : G → R, the payoff function for agent i, be:

Πi(g) ≡
∑

j∈Ni;g

Ij − µi(g)

That is, i’s payoff is just the sum of all the information that can be accessed
by her, less the cost of the paths reaching her that are established according to g
(recall that each link is assumed to have a unit cost). The intuition here is that
i gets a payoff from accessing to more information but at the same time she has
to pay a “fee” for each of the links on the paths to the sources of information.

Example 2 revisited: Suppose the information owned by the agents is:
I1 = 2, I2 = 2, I3 = 4, I4 = 3 and I5 = 3. Then, under strategy g we have that

Π1(g) = I1 + · · · + I5 − µ1(g) = 2 + 2 + 4 + 3 + 3 − 5 = 9

Π2(g) = I2 + · · · + I5 − µ2(g) = 2 + 4 + 3 + 3 − 3 = 9

Π3(g) = I3 + · · · + I5 − µ3(g) = 4 + 3 + 3 − 2 = 8

Π4(g) = I4 − µ4(g) = 3 − 0 = 3

Π5(g) = I5 − µ5(g) = 3 − 0 = 3

We can notice here that, for example, if g1,5 = 0, 1 could improve her payoff
(i.e. obtaining 10 instead of 9) because she would still have access to I5 but
using one link less.

For each g ∈ G, agent i obtains a structure N i;g and her payoff depends
critically on the type of directed graph that corresponds to N i;g as summarized
in the following proposition:

Proposition 2 Given two joint strategies g and g
′
, Πi(g) ≥ Πi(g

′
) iff the cor-

responding graphs N i;g and N i,g
′

are such that:
∑

j∈Ni;g

Ij −
∑

j∈Ni;g′
Ij ≥ µi(g) − µi(g

′
).
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Proof: Trivial. �

This result conveys the intuition that the goal of a rational agent is to get
as much information as possible traversing as few links as possible. Two cases
are of particular interest:

• ∑
j∈Ni;g Ij =

∑
j∈Ni;g′ Ij and µi(g) ≤ µi(g

′
).

• ∑
j∈Ni;g Ij ≥ ∑

j∈Ni;g′ Ij and µi(g) = µi(g
′
).

The first shows that Πi(g) ≥ Πi(g
′
) if the information obtained through g is the

same as the one reached by means of g
′
but the number of links required is less

in g than in g
′
. The second case shows that Πi(g) ≥ Πi(g

′
) if the number of

links required to reach the information is the same in g and g
′
but the amount

of information obtained in g is more than the amount reached in g
′
.

3 Equilibrium and Optimality

Given a network g ∈ G,4 let g−i be the directed graph obtained by removing
all of agent i’s direct links. Then, g can be written as g = gi ⊕ g−i where ⊕
indicates that g is formed by the union of the links of gi and those in g−i. A
strategy gi is said the best response of agent i to g−i if

Πi(gi ⊕ g−i) ≥ Πi(g
′
i ⊕ g−i)

for all g
′
i ∈ Gi

Example 3: Consider again the case of N = {1, 2, 3, 4, 5}, where I1 = 2,
I2 = 2, I3 = 4, I4 = 3 and I5 = 3. Let g−1 be described by the following table:

Strategy 1 2 3 4 5
g2 0 X 1 0 1
g3 0 0 X 1 0
g4 0 0 0 X 0
g5 0 0 0 0 X

See Figure 3 for the situation faced by 1.
She has to decide to whom establish a connection. A possibility is to remain

isolated, but that would give her a payoff of only 2. Alternatively, she could
connect to as many of the other agents as she likes. But some connections may
be redundant in terms of the gain in information. Such redundancy, in turn,
would mean a higher cost for the same information. So, for instance, to connect
both to 3 and 4, would ensure 1 to have access to the information of 3 and 4.
The number of links required would be 3. The payoff is then 2+4+3 − 3 = 6.
She could, instead, connect only to 3, since she would still get hold of the

4According to Proposition 1 we identify a joint strategy g with its corresponding directed
graph.
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Figure 3:

Figure 4:

information of 3 and 4 but it would require only 2 links, i.e., her payoff would
be 2+4+3 − 2 = 7. A bit of reflection shows that the best answer for 1 would
be to connect only to the agent with the higher payoff under g−1. That is, to
agent 2, who has a payoff of 2 + 4 + 3 + 3 − 3 = 9. Then, 1 will reach the
information of 2, 3, 4 and 5, requiring 4 links. That is, her payoff would be of
10. Figure 5 shows the resulting network.

The set of best responses to g−i is BRi(g−i). A network g = 〈g1, . . . , gn〉
is said to be a Nash network if for each i, gi ∈ BRi(g−i) i.e. if g (as a joint
strategy) is a Nash equilibrium. In order to determine the structure of Nash
networks let us give a few more definitions that will allow us to describe some
additional properties of networks.

Given a network g, a set C ⊂ N is called a component of g if for every pair
of agents i and j in C (i �= j) we have that j ∈ N i;g and there does not exist
C

′
, C ⊂ C

′
for which this is true. A component C it said to be minimal if C is

not a component anymore once a link gi,j = 1 between two agents i and j in C
is cut off, i.e. if gi,j = 0.

Example 4:If N = {1, 2, 3, 4}, consider the following network g, represented
in Figure 5:
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Figure 5:

Strategy 1 2 3 4
g1 X 1 0 0
g2 0 X 1 0
g3 0 0 X 1
g4 0 1 0 X

Clearly C = {2, 3, 4} is a component, since N2;g = N3;g = N4;g = {2, 3, 4}
and if we consider N = C ∪ {1}, N is not a component, since 1 does not belong
to N2;g, N3;g or N4;g. On the other hand, C is minimal, since if we cut off any
of the links 23, 34 or 42 some of the agents are no longer reachable for at least
one agent in C. So, for instance, if 23 is cut off, in the new network g

′
we have

that N2,g
′
= {2}.

A network g it says to be connected if it supports a unique component. If
that unique component is minimal, g it says to be minimally connected. A
network that is not connected it says to be disconnected. A circular network is
one in which the agents can be labelled (by means of a function l : N → N) as
{l(1), . . . , l(n)} and gl(1),l(2) = gl(2),l(3) = . . . = gl(n−1),l(n) = gl(n),l(1) = 1 and
there are no other links.

Then, with all these elements at hand we can state the following result:

Lemma 1 A Nash network is circular.

Proof: Let us consider Πi : G → Z, for each i ∈ N . If we show that there
exists a unique (up to isomorphism) g∗ ∈ G that maximizes Πi for each i, given
that the others choose g∗−i we would establish that there exists only one Nash
equilibrium in the game. In fact, recalling Proposition 2 it is easy to show that
for every i the corresponding payoff should be:

Πi(g∗) =
∑

i∈N

In − n

In words: the maximum of information that can be reached is the sum of all
the information held by the agents while the minimum number of links that
would allow to make that amount of information available to all of them is

9



exactly n (i.e. a structure in which there exists only one path between any
pair of agents).5 It is easy to check that if all agents other than i choose g∗j ,
i’s choice will also be g∗i . Suppose by way of contradiction that i has chosen
g

′
i �= g∗i such that Πi(g

′
i, g

∗
i ) > Πi(g∗). That is, Πi(g

′
i, g

∗
i ) >

∑
i∈N In − n.

But since
∑

i∈N In cannot be improved upon, the only possibility is that the
number of links is smaller, i.e. Πi(g

′
i, g

∗
i ) =

∑
i∈N In − k, where k < n. On the

other hand, k �< (n − 1) since otherwise i will not be able to access to at least
one agent j and therefore cannot profit from her information Ij . Therefore,
Πi(g

′
i, g

∗
i ) =

∑
i∈N In − (n − 1). If so, one agent j will be accessed but will not

have access to i’s information because if every agent has access to Ii, and i has
access to every Ij , j �= i, the least number of links required is n.6 But this is
absurd, since each of the g∗j prescribes to maximize Πj and therefore, each j
will have access to i and the number of links will be n.

As said, there may exist many structures g∗ such that Πi(g∗) =
∑

i∈N In−n.
Since they have to support the maximum payoff for each agent, these g∗s have
to include all the agents in N and must be connected (otherwise the information
of the disconnected agents will be lost while the reduction in the cost of links
will not be enough to compensate that loss 7). On the other hand, any such
g∗ must be minimal since otherwise it would include a redundant link (which,
if cut-off, leaves the structure connected) and we assume that g∗ supports the
optimal outcome for each agent, in which there are only n links and all the
agents are connected. To show that a generic Nash network g∗ is circular let
us assume that it is not so. Therefore for every labelling l : N → N we have
that either at least one of g∗l(1),l(2), g

∗
l(2),l(3), . . . , g

∗
l(n−1),l(n), g

∗
l(n),l(1) has value 0

or there exists another link. This last possibility has to be discarded, since we
know that g∗ has only n links. Therefore it must not be possible to connect all
the agents in N in such a way that each agent is connected to just one agent.
But, since g∗ has to include all the agents and connect them with only n links
it is possible to choose one of the agents in the structure, say i, and attach to
her a label, l(i) = 1. i is connected to just only one agent j since if i where
connected to two different agents there would remain only n−2 links to connect
the other n − 1 agents. In that case at least one of the agents would not have
a direct link pointed to her and therefore she would get a payoff far lower than

5In particular, this payoff is (weakly) better than isolation. Consider an agent i such that
Ii > Ij for every j �= i. The payoff of remaining isolated is, for i, precisely Ii. Suppose by
contradiction that Ii +

∑
j �=i

Ij − n < Ii. Then
∑

j �=i
Ij < n, but, as Ij > 1 for every j,∑

j �=i
Ij > n − 1, i.e.

∑
j �=i

Ij ≥ n. Absurd.
6A simple proof ! by induction shows this. Assume that N = {i, j}. Then, if i has access

to j and j to i, |N | links are required. Assume that the claim is valid for |N | = n − 1. If

|N | = n consider a subset N
′ ⊂ N , N = {i} ∪ N

′
. Since |N ′ | = n − 1, all the elements in N

′

can be connected by n − 1 links. To connect i to each element of N
′

in such a way that each

agent in N
′

has access to i, just consider two agents in N
′
, j1 and j2, such that the length of

the path from j1 to j2 is n−2. Therefore, the length of the path from j2 to j1 is 1. Eliminate
this single link and replace it by two links: one from j2 to i and another from i to j1. In this

way, i will have access to all the agents in N
′

and each agent in N
′

will have access to i. The
number of links is then (n − 1) − 1 + 2 = n. Therefore, the claim is valid for every n > 0.

7Recall that each Ii is greater than the cost of a link.
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the maximum. According to this, label the agent to whom i is connected, j, as
l(j) = 2. Consider the only agent to whom j is connected, say k. Label k as
l(k) = 3. Proceed in the same way until an agent is reached following the path
of connections, say r, such that l(r) = n. Then, n− 1 links would already have
been used. It remains to establish to whom r is connected. It cannot be any
of the agents labelled as 2, . . . n− 1 since each of them, we argued has only one
connection (towards the agent with the previous label). On the other hand, r
cannot be connected to herself (otherwise her payoff would be only Ir). There-
fore, she must be linked to i (who has label 1). That is, we found a labelling
function l such that g∗l(1)l(2) = g∗l(2),l(3) = . . . = g∗l(n−1),l(n) = g∗l(n),l(1) = 1. This
contradicts our assumption that a Nash network is not circular. Therefore, g∗

is circular.Finally, we claimed that there could exist many of these g∗s. The
fact is that since they are circular, the only difference among them resides in
the names of the agents. Therefore, two different Nash networks over N are
isomorphic. That is, if g∗ and g∗

′
are two Nash networks over N , there exists

a function f : N → N such that for each i and j we have that g∗i,j = g∗
′

f(i),f(j). �

To illustrate some of the claims in this argument consider the following
example:

Example 5: Let N be {1, 2, 3} with I1 = 2, I2 = 3 and I3 = 4. Let g∗ be

Strategy 1 2 3
g∗1 X 1 0
g∗2 0 X 1
g∗3 1 0 X

Let us check out that g∗ is a Nash equilibrium. Consider the best response
of 1 to g∗−1. There are four options: ga

1 = 〈X, 0, 0〉, gb
1 = 〈X, 1, 0〉, gc

1 = 〈X, 0, 1〉
or gd

1 = 〈X, 1, 1〉. We have that Π1(ga
1 ⊕ g∗1) = I1 = 2, Π1(gb

1 ⊕ g∗1) = I1 + I2 +
I3 − 3 = 2 + 3 + 4 − 3 = 6, Π1(gc

1 ⊕ g∗1) = I1 + I3 − 2 = 2 + 4 − 2 = 4 and
Π1(gd

1 ⊕ g∗1) = I1 + I2 + I3 − 4 = 2 + 3 + 4 − 4 = 5.8 It is clear that gb
1 is

the best response to g∗−1, but precisely gb
1 = g∗1 . A similar argument is valid for

g∗2 and g∗3 . This shows that g∗ is a Nash network. On the other hand, consider
the following alternative network, g∗

′
over the same N :

Strategy 1 2 3
g∗

′
1 X 0 1

g∗
′

2 1 X 0
g∗

′
3 0 1 X

A brief examination shows that g∗
′
is also a Nash network that for each agent

in N yields the same payoff as g∗: Π1(g∗
′
) = Π2(g∗

′
) = Π3(g∗

′
) = I1 + I2 +

8Notice, in the case of the network gc
1⊕g∗1 , that N1;gc

1⊕g∗
1 = {1, 3} and there are two paths

that get to 1 from elements in this set: one that goes from 3 to 1 and the other that goes from
1, trough 3 , back to 1. This last path has two links, and includes the link corresponding to
the other one.
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Figure 6:

I3 − 3 = 2 + 3 + 4 − 3 = 6. It is easy to establish an isomorphism f : N → N
between g∗ and g∗

′
: f(1) = 2, f(2) = 1 and f(3) = 3. Then, just consider the

following table, obtained from the description of g∗ by a transposition of rows
and columns according to f :

Strategy f(1) f(2) f(3)
g∗f(1) X 0 1
g∗f(2) 1 X 0
g∗f(3) 0 1 X

Notice that the structure of entries in this table is identical to the corre-
sponding to g∗

′
. This establishes the isomorphism between g∗ and g∗

′
. Figure

6 exhibits this isomorphism graphically.
According to this result, a stable outcome in the strategic interaction of

agents is the circular network. We claim that it is stable because there is no
incentives, once the circular structure arises, to cut-off links and form new ones,
because the new configuration may at best achieve the same payoffs to the
agents. This argument raises the question of the optimality of the outcome.
That is, is there another configuration that may ensure better payoffs to the
agents? Before answering negatively this question, let us introduce two different
notions of optimality that may be worth to consider. One represents the notion
of social welfare ensured by a network. Formally, let W : G → Z defined as
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W (g) =
∑n

i=1 Πi(g) for g ∈ G. A network g is said efficient if W (g) ≥ W (g
′
)

for all g
′ ∈ G.

On the other hand, we have the notion of Pareto optimality. A network g
is said Pareto optimal if there does not exist another network g

′
such that for

each i ∈ N , Πi(g
′
) ≥ Πi(g) and for at least one i, Πi(g

′
) > Πi(g).

We have then the following result:

Proposition 3 A Nash network is both efficient and Pareto optimal.

Proof: Recall that a Nash network g∗ supports the maximum payoff for each
agent, Πi(g∗) =

∑
i∈N In − n. Therefore, Πi(g∗) ≥ Πi(g) for each i ∈ N and

each g ∈ G. Therefore, g∗ is Pareto optimal. By the same token, W (g∗) =∑
i∈N Πi(g∗) ≥

∑
i∈N Πi(g) = W (g) for each g ∈ G. That is, g∗ is efficient.�

4 Discussion

We presented in this paper a model of network formation as a non-cooperative
game where agents decide to whom to link by comparing the net benefits from
their actions. The decisions are made simultaneously and therefore we do not
require a dynamical setting which, instead, is present in [Bala-Goyal 2000]. De-
spite this, our framework does not differ that much from Bala and Goyal’s and
therefore our results are basically the same as those found dynamically. In a
model where non-myopic agents have higher link formation costs than benefits
a dynamic process converges again to a circular network [Watts 2002].

In our framework heterogeneity only means that each agent is endowed with
some particular information that is valuable for the other agents. This as-
sumption leads to an increase in the benefit from joining the network, making
the participation in the network always more valuable than isolation. Conse-
quently, the possibility of having an empty network as a Nash equilibrium (as in
[Bala-Goyal 2000]) is dropped. On the other hand, it is interesting that circular
network still arises as the main kind of equilibrium network.
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